

Available online at www.sciencedirect.com

Journal of Power Sources 168 (2007) 509-512

www.elsevier.com/locate/jpowsour

Short communication

Electrochemical performance of VOMoO₄ as negative electrode material for Li ion batteries

M. Anji Reddy^a, M. Satya Kishore^b, V. Pralong^b, V. Caignaert^b, U.V. Varadaraju^{a,*}, B. Raveau^b

^a Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036, India ^b Laboratoire CRISMAT, UMR 6508 CNRS ENSICAEN, 6 bd Maréchal Juin, 14050 CAEN Cedex, France

> Received 6 December 2006; accepted 18 February 2007 Available online 18 March 2007

Abstract

Polycrystalline samples of VOMoO₄ are prepared by a solid-state reaction method and their electrochemical properties are examined in the voltage window 0.005-3 V versus lithium. The reaction mechanism of a VOMoO₄ electrode for Li insertion/extraction is followed by ex situ X-ray diffraction analysis. During initial discharge, a large capacity (1280 mAh g^{-1}) is observed and corresponds to the reaction of ~10.3 Li. The ex situ XRD patterns indicate the formation of the crystalline phase Li₄MoO₅ during the initial stages of discharge, which transforms irreversibly to amorphous phases on further discharge to 0.005 V. On cycling, the reversible capacity is due to the extraction/insertion of lithium from the amorphous phases. A discharge capacity of 320 mAh g^{-1} is obtained after 80 cycles when cycling is performed at a current density of 120 mA g^{-1} . © 2007 Elsevier B.V. All rights reserved.

Keywords: Negative electrode; Vanadates; Molybdenum oxide; Li-ion battery; Discharge capacity; X-ray diffraction

1. Introduction

Graphite has been used as the negative electrode (anode) material in commercial lithium-ion batteries. Although it exhibits good reversibility with Li+, the main drawback is a low specific capacity (\sim 370 mAh g⁻¹). The increasing energy demands of Li-ion batteries in electronic devices requires of higher performance and hence the need for materials that offer greater gravimetric and volumetric energy density. Towards this end, tin composite oxides (TCO) have been shown to be promising negative electrode materials [1]. The disadvantage with tin-based oxides is the formation of inactive Li₂O during initial discharge, which minimizes the energy density. On the other hand, the reversibility of Li₂O has been demonstrated in nanophase transitional metal oxides [2]. This has generated interest in the search for transition metal oxides as anode materials for Li-ion batteries. A great number of structurally different vanadates containing transition metals, such as LiMVO₄

0378-7753/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2007.02.089

(M = Ni, Co, Zn, Cu, Cd and Mg) [3–5], MVO₄ (M = Fe, Cr, In,Al, Y) [6], MV_2O_6 (M = Mn, Ni, Zn and Cd) [7,8], $M_2V_2O_7$ (M = Co, Ni, Zn and Cd) [4,8], $M_3V_2O_8$ (M = Ni, Zn) [8] have been explored as anode materials. Vanadium-based oxides react with large amounts of Li at low voltage, which leads to high specific capacities. Unfortunately, these materials exhibit poor capacity retention and also the reaction mechanism varies with composition and/or structure. For example, in $LiMVO_4$ (M = Ni, Co), X-ray absorption spectroscopy studies have shown that during initial discharge vanadium is reduced to the +2 oxidation state and the transition metal to the metallic state [9,10]. During charge, vanadium is oxidized to the +5 state, whereas the transition metal is not oxidized. On the other hand, Mössbauer spectroscopic studies of FeVO₄ have shown that nanoparticles of Fe metal that are formed during initial discharge are reoxidized on charge [11]. For MnV_2O_6 , the reversible capacity is enhanced with Mo substitution [12]. Several other molybdates, such as MoO₂ [13], solid solutions of MoO₂–SnO₂ [14], Na_{0.25}MoO₃ [15,16] and MMoO₄ (M = Mn, Cu, Ni, Zn, Fe and Ca) [17,18], CaMoO₄ [19] have also been examined as anode materials. The presence of two electrochemically active species, viz. V and Mo, in a single lattice can lead to high specific

^{*} Corresponding author. Tel.: +91 44 2257 4215; fax: +91 44 2257 0509. *E-mail address:* varada@iitm.ac.in (U.V. Varadaraju).

capacity. In this context, the mechanism of lithium insertion into $LiVMoO_6$ has been reported [20]. The present study, involves an investigation of the electrochemical properties of the compound $VOMoO_4$. Furthermore, the structural changes that accompany lithium insertion/extraction are evaluated by means of ex situ X-ray diffraction (XRD).

2. Experimental

The starting materials for the synthesis of VOMoO₄ are VO₂ and MoO₃. The VO₂ was synthesized by heating stoichiometric amounts of V₂O₅ and V₂O₃ in an evacuated and sealed quartz tube at 800 °C for 36 h with intermittent grinding. The resulting VO₂ was mixed with MoO₃ in a 1:1 mole ratio and pressed into pellets. The pellets were annealed in an evacuated and sealed quartz tube at 650 °C for 2 days with intermittent grinding.

Powder X-ray diffraction patterns were recorded in the 2θ range 5–100° (Cu K α radiation) by using a Philips X'pert diffractometer with Bragg-Brentano geometry. Rietveld refinement was carried out with the FULLPROF program.

For electrochemical studies, electrodes were fabricated by mixing the active material, acetylene black (Denka Singapore Pvt. Ltd) and polyvinylidene fluoride (PVDF) in a weight ratio of 75:15:10. N-Methyl-2-pyrrolidinone was added to the mixture to form a slurry, which was then spread on a stainless-steel foil and dried in an oven at 100 °C for 12 h. Swagelok cells were fabricated in an Argon-filled glove-box (mBraun, Germany, <5 ppm H₂O) with a lithium foil (Aldrich) as the anode, Teklon (Anatek, USA) was employed as the separator and 1 M LiPF₆ in 1:1 EC+DMC (Chiel industries Ltd., Korea) as the electrolyte (EC = ethylene carbonate; DMC = dimethyl carbonate). Cells were allowed to equilibrate for 24 h at room temperature (RT). Charge-discharge cycling of the cells was performed at RT in a galvanostatic mode at 120 mA g^{-1} (Arbin battery cycling unit BT2000, USA). For ex situ XRD studies of the electrodes, the cells were discharged and charged to various states and then disassembled inside the glove-box. The XRD patterns were taken by covering the electrodes with a Mylar film to avoid exposure to air and moisture.

3. Results and discussion

The Rietveld refined powder XRD pattern of VOMoO₄ is presented in Fig. 1. The presence of sharp peaks indicates the formation of a well-crystalline phase. All the peaks are indexed on the basis of a tetragonal system with the space group P4/n. The refined lattice parameters are a = b = 6.6110(5) Å and c = 4.2675(4) Å. The values match well with those reported by Eick and Kihlborg [21]. The inset of Fig. 1 shows the structure of VOMoO₄ viewed in the *ab* plane. In VOMoO₄, vanadium and molybdenum are in the 4+ and 6+ oxidation states, respectively. The structure is built up of corner connecting VO₅ square pyramids and MoO₄ tetrahedra.

The electrochemical charge–discharge curves of VOMoO₄ are shown in Fig. 2(a). The corresponding differential capacity plots are presented in Fig. 2(b). The initial discharge curve reveals a sharp drop in voltage to 1.2 V, followed by two

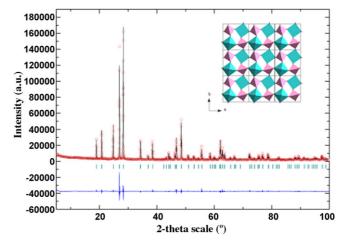


Fig. 1. Rietveld refinement pattern of powder X-ray diffraction data for VOMoO₄. Inset shows crystal structure of VOMoO₄.

plateaux at 0.5 and 0.2 V. The plateau at 0.5 V corresponds to the reaction of 4.0 Li. On complete discharge to 0.05 V, \sim 10.3 Li are reacted and this corresponds to a capacity of \sim 1230 mAh g⁻¹. During charge, no plateau is observed, and

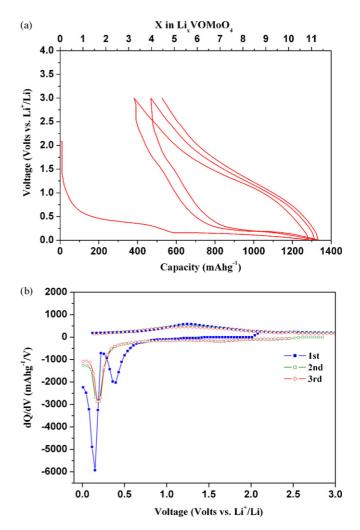


Fig. 2. (a) Charge–discharge profiles of VOMoO₄/Li cell and (b) differential capacity plots of VOMoO₄ electrode for first 3 cycles.

the voltage gradually increases to 3.0 V (cut-off voltage) with large polarization. The initial charge capacity is 880 mAh g⁻¹, which indicates the extraction of 7.5 Li. The plateaux developed in the charge–discharge curves can be clearly seen in the differential capacity plots (Fig. 2(b)). During the second discharge, the plateau at ~0.5 V disappears, which is clearly evident from the differential capacity plots. This indicates that the reaction mechanism of VOMoO₄ with Li during initial discharge is different from that on subsequent cycling.

To investigate the structural changes during lithium insertion/extraction, ex situ XRD patterns were obtained for the electrodes at various stages of charge/discharge (Fig. 3). The XRD pattern (Fig. 3(b)) taken after the reaction of one Li with VOMoO₄ shows no change in the peak positions compared with the parent phase (Fig. 3(a)). This indicates that there is no intercalation of Li into the structure. Also, the attempts to intercalate Li by using *n*-BuLi proved not to be successful. Further reaction of Li results in the appearance of new peaks, which are marked as asterisk (*) in Fig. 4(c). The peaks are characteristic of the Li₄MoO₅ phase and are indexed based on the JCPDS card number 33-0806. In addition to the Li₄MoO₅ phase, weak reflections which correspond to an unidentified phase are observed at lower 2θ (Fig. 3(c and d)). The intensity of the peaks for the parent phase gradually decrease with simultaneous increase in the intensities of peaks for the Li₄MoO₅ phase. The peaks due to the VOMoO₄ phase completely disappear after reaction of 4Li (end of first plateau). Thus, it is concluded that the initial discharge capacity is mainly due to the reduction of V^{4+} with simultaneous formation of the Li₄MoO₅ phase that can be written as follows:

$$VOMoO_4 + 4Li \rightarrow Li_4Mo^{6+}O_5 + V^0$$
⁽¹⁾

Recently, the formation of crystalline intermediate phases, such as Li_2MoO_4 and Li_2MoO_3 have been identified during the electrochemical lithiation of CuMoO₄ and ZnMoO₄, respectively [17]. On further discharge of VOMoO₄ to a lower voltage,

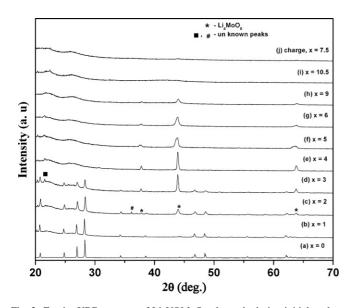


Fig. 3. Ex situ XRD patterns of $Li_x VOMoO_4$ electrode during initial cycle at different Li content (x).

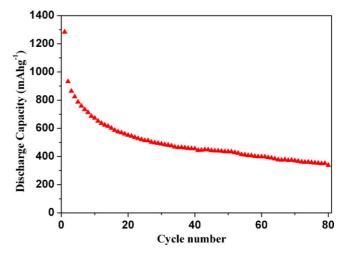


Fig. 4. Cycling performance of VOMoO₄/Li cell.

the observed capacity is due to the reaction of Li with Li₄MoO₅ (corresponds to second plateau). This leads to a gradual decrease in the intensities of the peaks corresponding to the Li₄MoO₅ phase and, consequently, the compound becomes amorphous on discharge to 0.005 V. The irreversible transformation of crystalline vanadates and molybdates to amorphous phases on discharge is known in the literature [6,11,16,18]. After subtracting the capacity due to acetylene black, the amount of Li reacted at the end of initial discharge is \sim 10.3 Li, which is as expected according to reaction (2), i.e.

$$VOMoO_4 + 10Li \rightarrow V + Mo + 5Li_2O$$
(2)

During charge, Li⁺ is extracted from Li₂O and consequently MO_x (M = Mo, V) may form. The observed large polarization in voltage is typical for this type of conversion reaction. Also, the high initial charge capacity (7.5 Li) suggests that both V and Mo species become oxidized during initial charge. Careful studies using X-ray absorption spectroscopy are necessary to determine the oxidation states of V and Mo after initial charge. The XRD pattern of the fully charged electrode is amorphous (Fig. 3(j)). Thus, during subsequent cycling, lithium is extracted/inserted from amorphous phases.

The cycling behaviour of a VOMoO₄/Li cell during the first 80 cycles is given in Fig. 4. A large irreversible capacity loss of 350 mAh g^{-1} occurs for the first cycle. During the first 20 cycles, the capacity fades rapidly, but this effect is less pronounced on further cycling. A discharge capacity of 320 mAh g^{-1} is observed even after 80 cycles. Since the conversion efficiency of Li₂O and M to MO_x and Li is dependent on both the nature and the size of the M particles, the initial particle size of VOMoO₄ may also play a crucial role in determining the rapid fading of capacity during initial cycles. In the present case, it is expected that the reversible capacity can be improved by decreasing the size of the VOMoO₄ particles.

4. Conclusions

VOMoO₄ has been explored as an anode material for Li-ion batteries. During initial discharge, ex-situ XRD patterns show

the conversion of VOMoO₄ to a crystalline intermediate phase Li₄MoO₅, which transforms irreversibly to amorphous phases, viz. Li₂O, Mo and V. The initial charge capacity corresponds to extraction of \sim 7.5 Li, which suggests the extraction of lithium from Li₂O resulting in the partial oxidation of both vanadium and molybdenum. Although VOMoO₄ exhibits a high discharge capacity of about 320 mAh g⁻¹, even after 80 cycles, the irreversible capacity loss during initial cycles and large polarization limits its application in Li-ion batteries.

Acknowledgements

Financial support from IFCPAR (Indo-French Centre for the Promotion of Advanced Research/Centre Franco-Indien Pour la Promotion de la Recherche Avancee) and from the LAFICS program is gratefully acknowledged.

References

- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) 1395.
- [2] P. Poizot, S. Laurelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000) 796.
- [3] D. Guyomard, C. Sigala, A. Le Gal La Salle, Y. Piffard, J. Power Sources 68 (1997) 692.
- [4] S. Denis, E. Baudrin, F. Orsini, G. Ouvard, M. Touboul, J.-M. Tarascon, J. Power Sources 81/82 (1999) 79.

- [5] R. Kanno, Y. Takeda, M. Hasegawa, Y. Kawamoto, O. Yamamoto, J. Solid State Chem. 94 (1991) 319.
- [6] S. Denis, E. Baudrin, M. Touboul, J.-M. Tarascon, J. Electrochem. Soc. 144 (1997) 4099.
- [7] S.-S. Kim, H. Ikuta, M. Wakihara, Solid State Ionics 139 (2001) 57.
- [8] A.F. Fuentes, L. Trevino, A. Martinez-de la Cruz, L.M. Torres-Martinez, J. Power Sources 81/82 (1999) 264.
- [9] C. Rossignol, G. Ouvard, E. Baudrin, J. Electrochem. Soc. 148 (2001) A869.
- [10] J. Shirakawa, M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, Electrochem. Solid State Lett. 7 (2004) A27.
- [11] S. Denis, R. Dedryvère, E. Baudrin, S. Laruelle, M. Touboul, J. Olivier-Fourcade, J.C. Jumas, J.-M. Tarascon, Chem. Mater. 12 (2000) 3733.
- [12] D. Hara, H. Ikuta, Y. Uchimoto, M. Wakihara, J. Mater. Chem. 12 (2002) 2507.
- [13] J.J. Auborn, Y.L. Barberio, J. Electrochem. Soc. 134 (1987) 638.
- [14] M. Martos, J. Morales, L. Sánchez, J. Mater. Chem. 12 (2002) 2979.
- [15] F. Leroux, L.F. Nazar, Solid State Ionics 133 (2000) 37-50.
- [16] F. Leroux, G.R. Goward, W.P. Power, L.F. Nazar, Electrochem. Solid State Lett. 1 (1998) 255.
- [17] N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, J. Power Sources 127 (2004) 76.
- [18] S.-S. Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara, Solid State Ionics 146 (2002) 249.
- [19] N. Sharma, K.M. Shaju, G.V. Subba Rao, B.V.R. chowdari, Z.L. Dong, T.J. White, Chem. Mater. 16 (2004) 504.
- [20] R.S. Liu, C.Y. Wang, V.A. Drozd, S.F. Hu, H.-S. Sheu, Electrochem. Solid State Lett. 8 (2005) A650.
- [21] H. Eick, L. Kihlborg, Acta Chem. Scand. 20 (1966) 722.